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Abstract

/ Analogues of Freidlin and Wentzell's estimates for diffusion processes and

the functional law of the iterated logarithm are obtained for a class of

stochastic processes represented by multiple Wiener integrals with respect to

two parameter Wiener processes, which arise as the limit processes of sequences

of normalized symmetric statistics.

*Research supported by Air Force Office of Scientific Research Grant No.

F49620 85C 0144.
, Accession For

NTIS GRA&I
DTIC TAB
Unannounced

00 Justifioatien

Distributiaon/

Availability ode 
FAvail and/or

i's



1. Introduction and results. Let h = h(u1 .... uM) be a square integrable

symmetric function on [0,1]m and assume that h is canonical, i.e., it satisfies

the condition

Ilh(ul,u 2  ... U,)du1 = 0 for all u2 .... eu e [0.1].

Let {X} be a sequence of independent identically distributed random variables

uniformly distributed over [0,1]. Consider the following random sequence of

normalized symmetric statistics

Yn(t) = n I h(Xi ,...X l ), OtKl,

1YtI< ...1 i m[nt]  m

in D[O,1]. the space of right continuous functions on [0,1] having left limits

with Skorohod's Jn topology. A. Mandelbaum and M.S. Taqqu [3] showed that the

random sequence (Yn(t)) converges weakly in D[O1] to the following process X:

X(t) =ffi ...Y f• f ... f h(u1 .... Um)lt(Vl) ...l1t(Vm)

[0.1] [0,1]m

•W(du I ,dvl)... W(dum,dv), OtKl,

where the right hand side is an m-pie Wiener integral with respect to a two

parameter Wiener process (W(u.v), Ou, vKl) and 1t(- ) is the indicator function

of [O,t]. X has continuous paths a.s. and note also that it can be written as

X(t) = S...! h(uI ..... u m)Wt(dul).. .Wt(dum). Ot~l.

[0,1])

with Wt(u) = W(ut).

The purpose of this note is firstly to prove certain large deviations

results, i.e., asymptotic estimates of Freidlin-Wentzell type, for the above

process X. and secondly to remark that the functional law of the iterated

logarithm for X can be derived by the same arguments.

Let CffC([O.1]; R N ) be the space of R N-valued continuous functions x on

[0,1) vanishing at the origin, with the norm IlxIIc = sup Ix(t)l and the metric

d(-,-). where 'I stands for the Euclidean norm in R . Let BfB(t)=(Bi(t),1liKN),
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O~t~l. be an N-dimensional standard Brownian motion with B(O)=O. and let HN

denote the reproducing kernel Hilbert space (RIM) associated with B. i.e., the

Hilbert space consisting of absolutely continuous function -p on [0.1] such that

op(O)=O and its derivative @ is square integrable. Its norm 11f11H is given by
II 11 H=1I 1 12-(J1I2) 1 .V H is a subspace of cN and the sets Kr={4PeH " II[llH

K r). r>O. are compact in CN.

Define a mapping A from L2 [0.1] 0 H1 (the tensor product of L2 [0.1 and

MW H1 ) to C1 by

Af(t) - ...f h(uI ..... um)f(ul.t). ..f(u m t)du 1...dum ,  O~t~l

[0.1]m

22

for feL2[0,1] * H1 . and let G denote the class of functions

G = {g--Af. £ a L2[0.1] @ H).

Let I11111 be the norm of L2OR.1J 0 H1, which is given. e.g.. by

III f11 1=f(- f(u.t)) dudt. Define

D(g)=inflljfjl: g--Af, f.L2 [0.1] 0 H1) for gaG.

and

C =(g--Af; I1l111fil r r>O.

The main result of this note is the following

Theorem 1. (i) For any geC and for any 6. 5'>O. there is a number a1=a1(5,5'.

D(g)) such that

P(IlX/a-gII c < 5) exq[-(a 2 /m/2)(D 2 (g) + 5')]

for all a a1 , and

(ii) for any 6. 5'. r00. there is a number a2 =a2(55'r) such that

P(d(X/a.G ) > 6) exp[-(a2/m/2)(r -6')]

for all a a 2 .

In the proof of Theorem 1 we need the following Freidlin-Wentzell type

' ,, , N , , , , . "?.', , . ' . . .. ., . . .( " . , - . * . . . " . -.- - . . J ..-,..,.. ,',~ . , 7- , j ,..+...,. ,



estimates for N-dimensional Brownian motion B.

Theorem A (1) For any ip e H N and for any 5. 6' > 0, there is a number

a I=a(55III) such that

*P(IIB/a - *1C< 6) exp(-(a2/2)(I 11 + 5')]

for all a a1 I n

(Ii) for any 5.5',r > 0. there is a number a2 = a2(5.5',r) such that

P(d(B/a. K r) > 6) K exp[-(a2/2)(r 2-5'))

for all a a2 .

Theorem A is a special case of general result on Gaussian processes, and we

shall use the following easy consequences of Theorem A (see [2]).

Let F be a continuous mapping from CN to C1V homogeneous with degree p>O,

i.e., satisfying the condition F(c-)=cpF(-) for any c00.

Theorem B (i) For any 4PeH N and for any 5,5*>0.

P(IIF(B)/a-F(v)IIC < 5) exp[-(a2//2) (I IVIIH + 6,)]

for all sufficiently large a. and

(ii) for any 5. 65. r0,

P(d(F(B)/a. F(K r)) > 5) exp[-(a2/ ')( 2 6]

for all sufficiently large a.

Theorem C

lim (1/a p) log P(IIF(B)110 > a) = -b2 /2.

where

b2= Inf(I IfII: IIF(4p)110 > 1)

= sup {r2: sup(IIF(.,)IIC: K Kr <



The arguments used in the proof of Theorem 1. combined with Strassen's law

of the Iterated logarithm for Brownian motion. yield also the following

functional Iterated logarithm law for the process X.

Theorem 2.. Define the random sequence {Zn} in C1I by

m/2
Zn (t) = X(nt)/(2n log~jn) . O~t~l. n 3,

where log2=log log. Then, with probability 1 {Z n) is relatively compact and the

set of its limit points coincides with G1 .

Remark. The above theorem is an improvement of a recent result of H. Dehling

[1]. in the sense that a moment condition on h is weakened. However. It should

be noted that Dehling [1] proves more generally the functional law of the

iterated logarithm for (Y n(t)}* The methods of proofs are different.

2. Proof of Theorem I

Let {ei, I 0) be a complete orthonormal sequence (CONS) in L 2[0,1] with

e0-1. Then (e,1 (ul). .. ei (um). i,.. .. i 0) is a CURS In L 2([O.l]m) ad

he-L2 ([0,l]m), symmetric and canonical, can be expanded as '

h(u,...,.u ) I c I ' ei (ul). .. .e, (u m). c, I . e R.
m 01 ...l *i m '"' m 1 m 1- m

F r N l l h,1(u1 .. .,u ) = I c1  .. e I (u ) ... e , (u ).

and define the process byi'" ml mt~j b

XN(t) =f..1'hN~(ul.....um) Wt(du,) ... Wt(du,).

[0, 1]m

Then we have

IVN NO



P( IIX-X nI IC > z) C exp(-MN z2/m)

for all sufficiently large z>O. where C is a finite constant and the positive

* constant MN can be made arbitrarily large by taking N large.

Pro- The lemma follows from a result of Plikusas [5] on multiple Wiener

integrals and Lems 6.2 and 6.3 of [4]. Indeed it is enough to note that the

exponential bound obtained by Plikusas holds also for multiple Wiener integrals

with respect to two parameter Wiener processes and that. putting ZN=X-XN' we

have

EIZN(t + s)_ZN(t)12  CNs for 0 t < t + s K 1,

with a finite constant 0N an

IIEIZN(t) 1211C = m! Ijh-hr4I12

where 11-112 is the norm of L2([0.1]'). Now

XN(t) = ci 1 II...f e I (ul)... .ei (u M)Wt(dul). .. .W(dum)
1 l . I 1 m [0 1]m Im

and, since {e,} is orthonormal. each term of the right hand side can be written

as a product of Hermite polynomials, I.e..

e,1(f .e, (u )W(du).. tdM

H e() d) .. H (eq(u)W(du)),

if there are p1 e q I ... eq (-) among e,1  e M (-) with l"+rm

O~p"''Pr'where H p(-) is the p-th Hermite polynomial with leading coefficient

1. Note also that

B = (f e,(u)Wt(du).....f 1N )Wt(du))

*is an N-dimensional Brownian motion.

Define a mapping TN from CN to C1 by

% N.-



T-N. . ixPN ix p((.)...x(-). for x=(x I..

Then

XN(t)-TN(B)(t) I  c.... fq Wd .H rp 1"'(u)Wt(du))

- (.q (, (u)Wt(du)) r}.

i.e.. XN-TN(B) is a finite linear combination of polynomials of degree m-2.

Applying Theorem C to each term, we obtain

Lemma 2. For any 6 > 0 we have

P(Cl/a) IIX-TN(B)Ijc > 8) K C-exp[-C"'a2/(m-2)] "

for sufficiently large a. where C' and C" are finite constants.

Since TN is clearly continuous and homogeneous with degree m, we get from

Theorem B

Lemma 3. (1) For any v e HN and for any 6,6' > O. %

P(lITN(B)/a - TN()IIC < 6) exp[-(a m/2)(l1*11 1 + 6')]

for sufficiently large a, and

(ii) for any 6,6',r > 0, 'e

P(d(TN(B)/a. TN(Kr))>K) exp[-(a2m/2)(r 2-6')]

for sufficiently large a.

Let (0j . JO} be a CONS in H,. Then {el J , ij 2 0) is a CONS in
m

L2 [O,1]H 1, and any feL
2 [O.10H 1 can be expanded as f(ut) = c,e.u),Pj(t)

withi 2< m* Put I(t) = I c ij 'i(t). Then 0, e H, for all I 0.I~j~o J=



fcu.t)= .c(u)4i(t) and 111f,112  = _ I I I IIII -= IjIjpII2
1=0 i_=0 2 i=0 H

Now, let g = Af a G with f a L2 [0,1] H1 and define

gN(t) = 'O 1fhNUl....u m )f(uIt)... f(u , t)dul.. .du.

By Schwarz's inequality,

jg(t) - gN(t)l 9 IIh-hNII 2 • (ff2 (ut)du)"2I
llh-hNll2  ( f pj(t)) m/2,

I=0

and so

I Ih-NIIb I 112ll)m/ 2

i=0

= IIh-hNII2  IIIf.llm .

Note that

gN1t) c I.-. eI (u1).. e (um )
1il I ..... 9N l"-m [0.1]m I m

f(u1,t).. .f(u m t)dul... dum

c i  I (foe, (u)f(u.t)du).. .( oe (u)f(u ,t)du)
1 iI ... .im l9N 1" i 1 m

= .c i Io (t)...,Pi  Mt

Pl P2 "-- (*€ ql~t)) ...'(%qr(t))
1g t1 ..... I m 9N 'i1 " .. r

= TN(,p)(t) ,  where f = I N'

and also that, for any given f = (f1 ...... N) e HN' If we put f(u,t)

N 2 'f''-liiadA
=I eiu)f,(t), then feL2[0.1] 0 H1 - 1I1f111 = IIflIH and Af =TN(4p).

From the above we immediately obtain the following

Lemma 4 (1) For any g = Af a G with f e L2 [0.1] H1 and for any 6 > 0. there is

"
,
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an element gN of the form wi=TN() with vaN. ll%*llH IlIflll such that

IIg-9NIIc < 6 for all sufficiently large N.

(ii) TN(Kr) C Gr for all r>O. Nl.

Proof of Theorem 1 (i Let g a G, 6,'>0 be given, and assume that g is of the

form g--Af, feL2 [O[1]@H1 . Choose N large enough that itlg-gllc < 6/4 with

gN=TN(P), veH (Lemma 4 (1)), and MN > (4/6)2/m (11lf,1112 + 6') (cf. Lemm 1).

Then, by Lemmas 1, 2 and 3(i).

P( I IX/-l Ic < 6) P( IITIN(B)/a-TN(p)I IC < 6/4)

- P(IIX-xlII C > a6/4)

- P(IIXN-TN(B)IIc > a6/4)

Sexp [-(a2/m/2)(II 1II2 + 6'/3)]

- C * exp(-MN(a6/4)2]

- C, • exp[-C'a 
2/ (m-2 )]

for all sufficiently large a. Noting that 11*11 H  IlIIll. we thus obtain

p(IIX/a- glc < 6) exp[-(a/m/2)(I IfjII2 + 26'/3)]

for all sufficiently large a. and the assertion follows from the definition of

D(g).

Proof of Theorem 1 (ii) Given 6,6', r>O, choose N large enough that

MN>( 3 16)2/m(r -6') (cf. Lemma 1). Then, by Lemmas 1, 2, 3(iu) and 4(11),

P(d(X/a, Gr) > 6) P(d(X/a, TN(K) > )

P(d(TN(B)/a. TN(Kr)) > 5/3) :1
+ P(IIX-XNIIc > a6/3) + P(IIXN-TN(B)IIc > a613)

2/i 2
9 exp [-(a2/ /2)(r - 6'/2)]

+ C - exp[-M n(a6/ 3 )2 / m ] + C' exp[-C''a 2 / ( m - 2 )

Sexp [-(a2/m/2)(r2_6') ]

"q



for all sufficiently large a. This completes the proof of Theorem 1.

3. Proof of Theorem 2

It follows from Lemmas 1 and 2 that

P(IiX-TN(B)IC > z) < exp[-Mz 2 m

for all sufficiently large z and N, where M is any given positive constant.

Note also that both processes X(-) and TN(B)(-) are self-similar with parameter

m/2. i.e.. X(c-) and cm -). and also TN(B)(c- ) and c NN (B)(-). have the

same finite dimensional distributions for any c>O. Using these facts and the

first Borel-Cantelli lemma, we get by the standard argument
a-

Lemma 5 For any E > 0. with probability I

lim sup IIZN - TN(B)(nt)/(2n log2n)""/1 1C

for sufficiently large N.

Note that

TN(B)(nt)/( 2n log2n)
m / 2 = TN(Bn)(t),

1/2where B (t) = B(nt)/(2n log2n)
/

. Thus, by Strassen's law of the iterated
n

logarithm for B and the continuous mapping theorem, we have

Lemma 6 For any N 1. with probability 1 the random sequence {TN(BN) n 3} in

C is relatively compact and the set of its limit points is TN(KI)={TN(P);

peK1 
} "

Theorem 2 follows from Lemmas 4, 5 and 6.

% % % %% % I
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